114 research outputs found

    FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation

    Get PDF
    Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro

    A robust system for RNA interference in the chicken using a modified microRNA operon

    Get PDF
    AbstractRNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo

    Morphological Variation Among Herring Gulls (Larus Argentatus) And Great Black-Backed Gulls (Larus Marinus) In Eastern North America

    Get PDF
    Herring Gull (Larus argentatus) and Great Black-backed Gull (L. marinus) morphometric data from various eastern North American locations was collected to examine the sources of variation in body size within and among geographic regions. For Herring Gulls, significant differences in all commonly taken measurements at local and regional scales were found. However, most of the variation in measurements was due to sex differences and the natural variance seen within local populations. Herring Gulls breeding in the Arctic did not show any evidence of being morphologically different from other groups. A discriminant function derived from a Newfoundland, Canada, breeding population of Herring Gulls successfully assigned the sex of birds in Atlantic Canada and Nunavut, Canada, further emphasizing that most of the variation seen is between sexes and not among local or even regional populations. It also indicates that the evitable variation introduced by inter-individual differences in measurements was insufficient to compromise the utility of the discriminant function. The correct classification rate was lower for Great Lakes breeding Herring Gulls, indicating that these birds have different morphologies than those of populations in easterly regions. In contrast, few differences and no clear geographic patterns were found in measurements for Great Black-backed Gulls. These results were consistent with recent genetic information, suggesting an older west to east radiation of Herring Gulls across North America and a lack of isolation among Great Black-Backed Gull populations

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    What contributes to patient and parent satisfaction with medication in the treatment of children with ADHD? A report on the development of a new rating scale

    Get PDF
    Satisfaction with medication is important in the evaluation of overall treatment outcome. There is a lack of consistent and validated rating scales for satisfaction with medication in ADHD, therefore comparison across studies is difficult. Here, we analyse the psychometric properties of the satisfaction with medication scale (SAMS), a new item-based questionnaire that assesses satisfaction with ADHD medication. Furthermore, we evaluate the predictive effect of ADHD symptoms and quality of life (QoL) on satisfaction. Data on satisfaction with Equasym XL® (methylphenidate) were collected in the OBSEER study using the parent (SAMS-P, n = 589) and patient (SAMS-S, n = 552) versions of the SAMS questionnaire. Internal consistency, item-total and cross-informant correlations, and the stability of satisfaction ratings over time were assessed. Satisfaction with medication scores were then correlated with ratings of ADHD symptoms and QoL. Rates of overall satisfaction with Equasym XL® among parents and children were high (>70%), as was internal consistency for both SAMS-P and SAMS-S (Cronbach’s alpha > 0.9). Similarly, item-total correlations were high (r = 0.71–0.90) for SAMS-P and medium–high (r = 0.57–0.77) for SAMS-S. Cross-informant correlations and the stability of satisfaction ratings were moderate (r = 0.54–0.59 and 0.48–0.60, respectively). ADHD symptom and QoL ratings were significantly negative and positive predictors of satisfaction, explaining 36–52% of satisfaction variance at the final visit. The results show that parent and patient satisfaction was high and could be assessed reliably with the new SAMS questionnaire. Parent and patient ratings were moderately correlated, and symptom severity, functional impairment and QoL were the most significant predictors of satisfaction

    A Randomized Controlled Study of Parent-assisted Children’s Friendship Training with Children having Autism Spectrum Disorders

    Get PDF
    This study evaluated Children’s Friendship Training (CFT), a manualized parent-assisted intervention to improve social skills among second to fifth grade children with autism spectrum disorders. Comparison was made with a delayed treatment control group (DTC). Targeted skills included conversational skills, peer entry skills, developing friendship networks, good sportsmanship, good host behavior during play dates, and handling teasing. At post-testing, the CFT group was superior to the DTC group on parent measures of social skill and play date behavior, and child measures of popularity and loneliness, At 3-month follow-up, parent measures showed significant improvement from baseline. Post-hoc analysis indicated more than 87% of children receiving CFT showed reliable change on at least one measure at post-test and 66.7% after 3 months follow-up

    Analysis of the prion protein in primates reveals a new polymorphism in codon 226 (Y226F)

    Full text link
    Bovine spongiform encephalopathy has been epizootic in cows for the last two decades, and most probably causes variant Creutzfeldt-Jakob disease in humans. A thorough understanding of prion pathogenesis relies on suitable animal models. Modeling the transmission of BSE to primates is a crucial public health priority, necessary for determining the tissue distribution of the agent and for devising therapies. Susceptibility of humans to BSE is partly determined by polymorphism within the gene encoding the cellular prion protein, Prnp, a fact that must be taken into account in primate studies. However, no information is available on Prnp polymorphisms in primates. We have sequenced the Prnp open reading frames of 30 non-consanguineous Rhesus macaques. All macaques were homozygous for methionine at codon 129, which is polymorphic in humans and seems to modulate prion susceptibility. However, we identified a novel polymorphism in macaque Prnp, localized on codon 226 (Y226F). A modulatory effect of this polymorphism on the development of prion disease is possible because codon 226 is close to the suggested binding side of the factor X, which has been invoked as a determinant of the prion species barrier
    corecore